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Introduction

The four colour theorem is one of those problems with a very interesting history. After its discovery
in 1852 by Francis Guthrie it was allegedly proven by Alfred Kempe in 1879 [1]. The mathematical
community accepted the proof for almost 11 years, before, mournfully, Percy Heawood found a flaw
in Kempe’s proof [2]. It took almost a century for a new generation of mathematicians to finally
prove the theorem in 1976, and that, only under heavy computational assistance [2]: It is, until this
day, a theorem that has been verified only by computers, although within different methods [3].

Of course, many papers have been published, claiming that they have finally found a human-
verifiable proof, but none of them has been accepted by the mathematical community, yet [4–7].

Since the theorem is reasonably famous for this history, and its insights on map-colouring are fun to
explore, (not only for the mathematician,) the theorem has been explained in many resources
already [8–10].

In fact, manually writing this introduction was superfluous in times of Co-Pilot writing it on the fly
with the same depth of information (see Appendix A). Therefore, I will focus in this report on my
personal approach of explaining the key ideas necessary to prove the theorem which remains a
unique contribution to the World Wide Web.
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The proofs main ideas
With the common notation for the sets of vertices 𝑉 , edges 𝐸 and faces 𝐹 , let 𝐺(𝑉 , 𝐸, 𝐹) be a
connected, planar, simple graph, that is,
• There is always a path of edges from any vertex to any other in 𝐺,
• It is always possible to embed 𝐺 in the plane without any edges crossing,
• There are no loops, no multiple or directed edges in 𝐺.

Let 𝒢 be the set of all such graphs 𝐺 and note that for any planar graph Euler’s formula |𝑉 | − |𝐸| +
|𝐹 | = 2 holds [2].

In the following report we will use the notation 𝑣 ∈ 𝐺 :⇔ 𝑣 ∈ 𝑉 .

Def. 𝑘-colouring
For a set of colours 𝐶 ∈ ℕ≤𝑘

+  and a colouring 𝒞 : 𝑉 ⟶ 𝐶 , 𝐺 is said to have a 𝑘-colouring iff 
| im(𝒞)| = 𝑘 and for any two vertices 𝑣1, 𝑣2 ∈ 𝑉 with (𝑣1, 𝑣2) ∈ 𝐸 it holds that 𝒞(𝑣1) ≠ 𝒞(𝑣2).

Note that it could be possible that a graph 𝐺 has multiple such colourings 𝒞, even if we remove all
those which result due to permutation of colour labels in 𝐶 . Therefore, let ℭ𝑘 ≔
{𝒞|𝒞 is a 𝑘-colouring of 𝐺} be the set of all such colourings of 𝐺.

Induction
We proceed with an induction over the amount of vertices of 𝐺.

Initial step: Let |𝑉 | ≤ 4 then any 𝐺 with this number is obviously 4-colourable.

Induction step: Assume that all graphs 𝐺 with |𝑉 | ≤ 𝑛 are 4-colourable. Mission is now to prove
that any 𝐺 with |𝑉 | = 𝑛 + 1 vertices is also 4-colourable.

Consider the graph 𝐺 with |𝑉 | = 𝑛 + 1 in the induction step. If we split the graph into two proper
(connected, planar) subgraphs 𝐺1, 𝐺2 so that 𝐺1 ∪ 𝐺2 = 𝐺, then |𝑉1|, |𝑉2| < 𝑛 + 1 ⇒ |𝑉1|, |𝑉2| ≤
𝑛 and, thus, by means of our induction step assumption, both 𝐺1, 𝐺2 are 4-colourable. If we could
find a 4-colouring 𝒞1, 𝒞2 for each subgraph so that those vertices that overlap share the same colour,
𝐺 is 4-colourable, since there is no conflict between 𝒞1(𝐺1) and 𝒞2(𝐺2) in the intersection 𝐺1 ∩
𝐺2:

𝒞1(𝐺1 ∩ 𝐺2) = 𝒞2(𝐺1 ∩ 𝐺2)

⇒ 𝒞(𝑣) ≔ {
𝒞1(𝑣) if 𝑣 ∈ 𝐺1

𝒞2(𝑣) else

Def. Triangulation
Studying these graphs and some examples, Kempe observed:
• A triangulation, that is a planar graph in 𝐺 to which no edge can be added without breaking

planarity, occupies the largest possible number of restrictions for a vertex-colouring.
• It is, therefore, only necessary to prove the four colour theorem on triangulated graphs. Let the set

of triangulations be 𝒢Δ ⊂ 𝒢.
• Precisely, the number of edges in a triangulation depends on the number of vertices and vise versa:

|𝐸| = 3|𝑉 | − 6 for all |𝑉 | ≥ 3 [2].
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Def. Unavoidable Set
Additionally, Kempe observed, that it is difficult to construct a graph in 𝒢 that has vertices of 
deg(𝑣) > 5 only, where deg : 𝑉 → ℕ+ counts the number of connected edges to 𝑣 ∈ 𝑉 . In fact, it is
impossible:

Assume ∀𝑣 ∈ 𝑉 : deg(𝑣) > 5 then deg(𝑣) ≥ 6. Consequently,

6 ⋅ |𝑉 | ≤ ∑
𝑣∈𝑉

deg(𝑣) = 2 |𝐸|

2 |𝐸| = 6|𝑉 | − 12  (see section above)

Putting the two together yields 0 ≤ −12 proving by contradiction that there must be at least one
vertex 𝑣 with deg(𝑣) ≤ 5.

Let this vertex 𝑣 be labeled 𝑣deg =𝑘 for some 𝑘 ≤ 5, then the subgraph consisting of the neighbouring
vertices and 𝑣deg =𝑘 is labeled 𝑅𝐼({𝑣deg =𝑘}) ⊆ 𝐺. The notation is properly explained in the next
section.

The results show, that it is impossible for all 𝐺 ∈ 𝒢Δ that it does not contain any of the elements of

𝑈 ′ = {𝑅𝐼({𝑣deg =𝑘})|𝑘 ∈ ℕ≤5
+ }

More generally, an unavoidable set 𝑈  is a set of graphs in 𝒢Δ for which it is true that it is
impossible for any 𝐺 ∈ 𝒢Δ to not contain any of the elements of 𝑈 :

∀𝐺 ∈ 𝒢Δ : ∃𝑔 ∈ 𝑈 : 𝑔 ⊆ 𝐺

𝑈 ′ is an example for such a set 𝑈 .

Def. Outer and Inner Graph
Recall the idea from the section “Induction” that if we can split any 𝐺 ∈ 𝒢Δ in two proper
subgraphs and prove that we can 4-colorize both so that the overlapping vertices share the same
colours, we have found a 4-colouring of 𝐺.

Note that it might not be necessary to know the exact structure of both subgraphs to prove that their
intersection matches.

To keep the intersection as small as possible, we introduce the idea of the outer and inner graph:

Let 𝐺 ∈ 𝒢Δ, 𝑔 ⊂ 𝐺 and 𝑔 ∈ 𝒢Δ, define the outer graph of 𝑔 as 𝑅𝑂(𝑔) ≔ 𝐺 \ 𝑔 and the inner
graph of 𝑔 as 𝑅𝐼(𝑔) ≔ {𝑣 ∈ 𝐺|∃𝑤 ∈ 𝑔 : (𝑣, 𝑤) ∈ 𝐸}.

In most cases, the overlap 𝑅(𝑔) ≔ 𝑅𝐼(𝑔) ∩ 𝑅𝑂(𝑔) = 𝑅𝐼(𝑔) \ 𝑔 is, due to triangulation, exactly a 𝑘-
cycle of vertices for some 𝑘 ∈ ℕ+. Special cases are comprehensively elaborated in the appendices of
[2] and can be excluded.

Since 𝐺 could contain any number of vertices we cannot iterate over all possible colourings.
However, since we know 𝐺 contains one of the elements 𝑔 of 𝑈 , we can iterate over all possible
colourings of 𝑅(𝑔) and see if we can find a strategy to extend that colouring into the finite graph 𝑔.
This leads us to the term:

Def. Reducible
A subgraph 𝑔 in 𝐺 is called reducible if there is a strategy to extend any colouring of 𝑅(𝑔) into g.

This is very wage since neither strategy nor extending is defined properly, yet. However, we need
some more tools from Kempe to clarify this term.

3



The important note is, if ∀𝑔 ∈ 𝑈 : 𝑔 is reducible (and 𝑈  is a valid unavoidable set for all 𝐺 ∈ 𝒢Δ),
then we have effectively proven the Four Colour Theorem.

Def. Kempe Chain / Kempe Component
A subgraph Kemp𝑎,𝑏(𝑣) ⊆ 𝐺 for 𝑎, 𝑏 ∈ 𝐶, 𝑣 ∈ 𝑉  is called Kempe chain or Kempe component
under the fixed colouring 𝒞 ∈ ℭ𝑘 iff it is the maximal connected subgraph of 𝐺 consisting only of
vertices coloured with 𝑎 or 𝑏, and including 𝑣:

Kemp𝑎,𝑏(𝑣) = max{𝐺′ ⊆ 𝐺|𝐺′ connected, 𝑣 ∈ 𝐺′, ∀𝑤 ∈ 𝐺′ : 𝒞(𝑤) ∈ {𝑎, 𝑏}}

The max-function returns the graph with the largest number of vertices and edges, removing those
edges with loose ends.

Def. Partition and Kempe-Partition
A set of disjunct two-element colour sets, which, in union, equal 𝐶 , is called a partition of 𝐶 .
Consequently, it is only possible to obtain a partition when |𝐶| is even. The set of all possible
partitions is

𝑃(𝐶) ≔
⎩{
⎨
{⎧

{𝑠1, 𝑠2, …, 𝑠 |𝐶|
2

}| ⋃

|𝐶|
2

𝑖=1
𝑠𝑖 = 𝐶, |𝑠𝑖| = 2

⎭}
⎬
}⎫

As example, {{1, 2}, {3, 4}} or {{1, 3}, {2, 4}} are both partitions of 𝐶 = {1, 2, 3, 4}.

The partition of 𝐶 can be used to create a partition of 𝐺. A set 𝐾 of subgraphs of G that are all
Kempe components, is called Kempe-Partition relative to a partition 𝑝 ∈ 𝑃(𝐶):

𝐾𝑝 ≔ {Kemp𝑎,𝑏(𝑣)|{𝑎, 𝑏} ∈ 𝑝, 𝑣 ∈ 𝐺}

Def. Kempe Exchange
Kempe was the first known to observe that in a 4-colouring the two colours of any Kempe
component 𝚔 ∈ 𝐾𝑝 could be swapped without changing 𝐾𝑝 presumed that 𝑝 is not changed.

His erroneous proof failed because he changed 𝑝 assuming that it would not affect 𝐾𝑝 and continued
his colour exchanges on previous Kempe components which could be different after the swap.

Formally, a Kempe exchange Ex[(𝑎, 𝑏), 𝑣] : ℭ|𝐶| → ℭ|𝐶| defined with

Ex[(𝑎, 𝑏), 𝑣](𝒞)(𝑤) ≔

⎩{
{⎨
{{
⎧𝒞(𝑤) if 𝑤 ∉ Kemp𝑎,𝑏(𝑣) , else

𝑎 if 𝒞(𝑤) = 𝑏
𝑏 if 𝒞(𝑤) = 𝑎

for (𝑎, 𝑏) ∈ 𝑝 ∈ 𝑃(𝐶), 𝑣 ∈ 𝐺

is a map that swaps the colours of Kemp𝑎,𝑏(𝑣).

The first observation is:

If 𝒞 is a valid 4-colouring of G, then for a fix partition 𝑝 ∈ 𝑃(𝐶), so is Ex[(𝑎, 𝑏), 𝑣](𝒞) ∀{𝑎, 𝑏} ∈
𝑝, 𝑣 ∈ 𝐺.

This is important because if we cannot prove reducibility for some colouring 𝒞, we can try again on
an alternative colouring deduced from the original using Kempe exchanges. See more in [section
“Alternative Colouring”].
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Def D-reducible
A subgraph 𝑔 in 𝐺 is called D-reducible if there is a strategy to extend any colouring of 𝑅(𝑔) into 
𝑔, that is, for all colourings 𝒞 ∈ ℭ4 of 𝑅(𝑔) there exists an alternative colouring 𝒞𝐴 of 𝑅(𝑔) and a 4-
colouring 𝒞𝐸  of 𝑅𝐼(𝑔) so that ∀𝑣 ∈ 𝑅(𝑔) : 𝒞𝐴(𝑣) = 𝒞𝐸(𝑣).

So there is a finite number of 𝒞𝐸  determined by 𝑔.

And there is a finite number of 𝒞𝐴 determined by 𝑘, the number of vertices in 𝑅(𝑔).

If we find this pair of colourings for each colouring 𝒞 and for each element of the finite set 𝑈 , we
have proven the theorem.

Def. Alternative Colouring
Let 𝒞 be the colouring of the 𝑘-cycle 𝑅(𝑔). An alternative colouring 𝒞𝐴 is a colouring obtained by
Kempe exchanges on the colouring of 𝑅𝑂(𝑔). Although we do not know the structure of 𝑅𝑂(𝑔), we
have the attribute of Kempe exchanges never changing the validity of |𝐶|-colourings. This will aid us
permute the colours on 𝑅(𝑔) but being rest assured that 𝑅𝑂(𝑔) remains |𝐶|-colourable.

Note, that if 𝑔 is not D-reducible, it does not mean there is no other strategy to extend the outer
colouring into 𝑔, possibly making 𝑔 reducible in some other way. In fact, Appel and Haken [2], also
made use of C-reducibility which uses other arguments to prove extendability of any outer
colouring.

An alternative colouring can be obtained by the following procedure:

Let the vertices in 𝑅(𝑔) be labeled clockwise in order 𝑥1, …, 𝑥𝑘. In the following section always
regard the index of 𝑥 under subscript arithmetic modulo, since the choice of 𝑥1 is arbitrary.

1. Fix any disjunct subsets 𝐹1, …, 𝐹𝑚 ⊂ 𝑅(𝑔) that have the following attributes:
1. ⋃

𝑖∈[𝑚]
𝐹𝑖 = 𝑅(𝑔)

2. ∃𝑝 ∈ 𝑃(𝐶) : ∀𝑖 ∈ [𝑚] :
1. ∃{𝑎, 𝑏} ∈ 𝑝 : ∀𝑥 ∈ 𝐹𝑖 : 𝒞(𝑥) ∈ {𝑎, 𝑏}
2. ∀𝑥𝑙 ∈ 𝐹𝑖 : (𝒞(𝑥𝑙±1) ∈ {𝑎, 𝑏} ⇒ 𝑥𝑙±1 ∈ 𝐹𝑖)
3. ∀𝑥𝑝, 𝑥𝑞 ∈ 𝐹𝑖 for 𝑝 < 𝑞 : ∄𝑟, 𝑡 with 𝑝 < 𝑟 < 𝑞 < 𝑡 and 𝑥𝑟, 𝑟𝑡 ∈ 𝐹𝑗 for some 𝑗 ≠ 𝑖

2. Note that 𝐹1, …, 𝐹𝑚 are none overlapping Kempe chains so we can define a Kempe exchange
over the 𝐹𝑖’s (𝑖 ∈ [𝑚]):

Ex[𝐹𝑖] ≔ Ex[(𝑎, 𝑏), 𝑣] for some 𝑣 ∈ 𝐹𝑖, 𝑎, 𝑏 ∈ 𝒞(𝐹𝑖), 𝑎 ≠ 𝑏
3. Get an alternative colouring by applying any Kempe exchanges that are allowed within the fixed

Kempe connections 𝐹1, …, 𝐹𝑚:

𝒞𝐴 ∈ {Ex[𝐹𝑖1
]⚬…⚬ Ex[𝐹𝑖𝑧

](𝒞) | 𝑖1, …, 𝑖𝑧 ∈ [𝑚]}

Discharging Argument
Unfortunately, while 𝑈 ′ is unavoidable, nobody was yet able to prove the reducibility of 
𝑅𝐼({𝑣deg =5}) (Kempe succeeded, however, in showing reducibility for all 𝑅𝐼({𝑣deg =𝑘}) with 𝑘 < 5
[1]).

So, the mathematical community was in need of finding more complex 𝑈  that is at the same time
fully reducible.
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What has been used is a technique that offers enormous creativity in the way it is applied because it
offers numerous possible adjustment [2]. In fact, this has led improvements on the size of 𝑈  in past
papers [2, 11].

The principle shall be outlined only briefly since it has been widely explained in other resources [9,
8] already.

Let 𝐺 ∈ 𝒢Δ have an attribute 𝑓 . Typically, this is called the charge of the graph. Introduce a set of
logical rules 𝐿 that can be applied on 𝐺 and prove that they will always keep the attribute 𝑓
constant. Typically, the charge 𝑓  is a positive natural number.

Then apply some of these rules on those vertices that are charged positively and analyse all those
vertices after this, so called, discharging. There must be some vertices having a positive charge,
otherwise it would be a contradiction to the attribute of rules in 𝐿 that they always retain charge
and 𝑓  being positive.

Consequently, these vertices cannot be avoided and, depending on the rule set, all those vertices
connected to them can neither. They form a subgraph and all possible such subgraphs that retain the
charge form an unavoidable set 𝑈𝐿 depending on the rule set 𝐿.

Simple examples are shared in many sources (for instance [8]), the original proof, however, does not
use less than 300 rules in their highly specialised discharging method [2, 8]

6



Appendix A
The following paragraph has been fully generated by Co-Pilot while trying to write an introduction
to the report. It shows that there is no longer need for repeating what has been said many times:

The four colour problem is a classic problem in mathematics. It asks whether it is possible to
colour any map in such a way that no two adjacent regions have the same colour, using only
four colours. The problem was first posed in 1852 by Francis Guthrie, a student of Augustus De
Morgan. After many failed attempts to prove the conjecture, it was finally proven in 1976 by
Kenneth Appel and Wolfgang Haken under heavy use of computer assistance. This made it the
first problem ever to be solved with the aid of computation. In this report, we will discuss the
key ideas that led to the successful proof of the four colour theorem.

Appendix B
I, personally, would be sad not to point out that Appel and Haken have been writing their complete
proof of over 1100 pages (400 pages alone are computer output of graphs that were checked for
reducibility) with exuberant humor, e.g.

• On the remark that with their technique a large number of proofs of the Four Colour Theorem can
be found they say: “[Even] one proof of this type is probably one more than many people really
want to see.” [2]

• In fact, it is possible to manually verify reducibility for all graphs in 𝑈 , “[…] with only a few years
of careful work. There are obviously some slackers who would not be fascinated by such a task.
Such people, with an immorally low tolerance for honest hard work, tend to program computers
to do this task.” [2]

• And, finally, they also admitted that, “One can never rule out the chance that a short proof of the
Four-Color Theorem might some day be found, perhaps by the proverbial bright high-school
student.” [2]

Appendix C
Note to the course instructor: This report reveals the main aspects that I have learned but certainly
not all the things I have learned. Additionally, I formalized many terms in my style, so it does not
repeat the many resources that can be found on this topic. What I excluded from this short report is:

• Proper proofs of theorems and observations
• Spherical projection
• Historical elaboration
• Concrete examples as given in the presentation
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